Table 2. Hydrogen-bond geometry (with e.s.d.'s in parentheses)

	Symmetry code	$D \cdots A$ (\AA)	$D-\mathrm{H}$ (\AA)	$\mathrm{H} \cdots A$ (\AA)	$D-\mathrm{H} \cdots A$ $\left({ }^{\circ}\right)$	$\mathrm{H}-D \cdots A$ $\left({ }^{\circ}\right)$
$\mathrm{N}(3)-\mathrm{H}(32) \cdots \mathrm{Cl}$	(i)	$3.237(5)$	$1.19(5)$	$2.16(3)$	$148(4)$	$21(3)$
$\mathrm{N}(2)-\mathrm{H}(22) \cdots \mathrm{Cl}$	(ii)	$3.244(5)$	$1.01(5)$	$2.25(5)$	$167(4)$	$9(2)$
$\mathrm{O}(W)-\mathrm{H}(W 1) \cdots \mathrm{Cl}$	(iii)	$3.226(5)$	$1.08(8)$	$2.17(10)$	$163(6)$	$11(5)$
$\mathrm{O}(W)-\mathrm{H}(W 2) \cdots \mathrm{Cl}$	(iv)	$3.218(5)$	$0.91(10)$	$2.37(9)$	$156(7)$	$17(6)$
$\mathrm{N}(3)-\mathrm{H}(31) \cdots \mathrm{Cl}$	(v)	$3.237(6)$	$1.05(5)$	$2.20(5)$	$170(4)$	$7(3)$
$\mathrm{N}(2)-\mathrm{H}(21) \cdots \mathrm{O}(W)$	(vi)	$2.840(6)$	$0.93(6)$	$1.95(6)$	$158(4)$	$15(4)$

Symmetry code: (i) x, y, z; (ii) $\frac{3}{2}-x, \bar{y}, \frac{1}{2}+z$; (iii) $\frac{3}{2}-x, 1-y, \frac{1}{2}+z$; (iv) $\frac{1}{2}+x, \frac{1}{2}-y, 2-z$;
(v) $1-x, \frac{1}{2}+y, \frac{3}{2}-z$; (vi) $x-\frac{1}{2}, \frac{1}{2}-y, 2-z$.

Fig. 2. Packing of the molecule viewed down the c axis.

Packing of the molecule viewed down the c axis is shown in Fig. 2. All the protons available from the amino groups and the water molecule take part in hydrogen bonding. Chlorine is involved in five hydrogen bonds, three $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and two $\mathrm{O}(W)-\mathrm{H} \cdots \mathrm{Cl}$ type. The sixth bond is between the water oxygen and $\mathrm{N}(2)$. The hydrogen-bond geometry is given in Table 2.

One of the authors (VGT) wishes to thank the University Grants Commission of India for financial assistance.

References

Beyler, S. A. \& Zaneveld, L. J. D. (1982). J. Reprod. Fertil. 66(2), 425-431.
Chandrasekar, K., Pattabhl, V. \& Raghunathan, S. (1982). Acta Cryst. B38, 2538-2540.
Dewar, M. J. S. \& Schmeising, H. N. (1960). Tetrahedron, 11, 96-120.
Diniz, C. R., Pereira, A. A., Barroso, J. \& Mares-Guia, M. (1965). Biochem. Biophys. Res. Commun. 21(5), 448-453.

Domenicano, A., Vaciago, A. \& Coulson, C. A. (1975). Acta Cryst. B31, 221-234.
Gantzel, K. N., Sparks, R. A. \& Trueblood, K. N. (1961). UCLALS 1 . Univ. of California.
Hughes, E. W. (1941). J. Am. Chem. Soc. 63, 1737-1752.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Markwardt, F., Landmann, H. \& Walsmann, P. (1968). Eur. J. Biochem. 6(4), 502-506.

Salunke, D. M. \& Vijayan, M. (1982). Acta Cryst. B38, 1328-1330.
Thailambal, V. G., Pattabhi, V., Lee, F. L., Le Page, Y. \& Gabe, E. J. (1985). Acta Cryst. C41, 105-107.

Acta Cryst. (1986). C42, 589-591

(\pm)-E-6,6,6-Trichloro-3-methoxy-5-methyl-2-hexenoic Acid

By Paul G. Williard,* Stephen E. de Laszlo, Gene B. Carpenter and Sophia E. Demoulini Department of Chemistry, Brown University, Providence, RI 02912, USA

(Received 28 September 1985; accepted 19 November 1985)

$$
\begin{gathered}
\text { Abstract. } \quad \mathrm{C}_{8} \mathrm{H}_{11} \mathrm{Cl}_{3} \mathrm{O}_{3}, \quad M_{r}=261.52, \quad \text { triclinic, } \\
a=5.926(1), \quad b=9.641(2), \quad c=11.254(3) \AA, \quad \alpha= \\
\text { * To whom correspondence should be addressed. }
\end{gathered}
$$

69.57 (2) $, \quad \beta=80 \cdot 14(2), \quad \gamma=75.48(2)^{\circ}, \quad V=$ $580.8(6) \AA^{3}, \quad Z=2, \quad D_{x}=1.50 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=$ $0.71069 \AA, \mu=7.7 \mathrm{~cm}^{-1}, \quad F(000)=268, T=295 \mathrm{~K}$. Final $R=0.0601$ for 1336 unique observed reflections.

The compound was prepared by synthesis as an intermediate for the construction of halogenated marine natural products. A least-squares plane through OOCCCO shows the α, β-unsaturated carboxylic acid to be essentially planar. The carboxylic acid functionality lies near a crystallographic inversion center and is hydrogen bonded to a carboxylic acid group of an adjacent molecule.

Table 1. Atom coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic temperature factors $\left(\AA^{2} \times 10^{3}\right)$

	x	y	z	$U_{\mathrm{eq}}{ }^{*}$
$\mathrm{C}(1)$	$7330(8)$	$4701(4)$	$1276(4)$	$47(2)$
$\mathrm{C}(2)$	$5373(7)$	$4402(4)$	$2212(4)$	$46(2)$
$\mathrm{C}(3)$	$4347(7)$	$5221(4)$	$3004(4)$	$44(2)$
$\mathrm{C}(4)$	$5014(7)$	$6570(4)$	$3076(4)$	$45(2)$
$\mathrm{C}(5)$	$3183(8)$	$8023(4)$	$2518(4)$	$50(2)$
$\mathrm{C}(6)$	$3419(8)$	$9316(5)$	$2924(5)$	$55(2)$
$\mathrm{C}(7)$	$1473(10)$	$3674(5)$	$3913(5)$	$66(2)$
$\mathrm{C}(8)$	$3210(13)$	$8432(6)$	$1103(5)$	$81(3)$
$\mathrm{Cl}(1)$	$6264(2)$	$9727(2)$	$2504(1)$	$78(1)$
$\mathrm{Cl}(2)$	$2890(3)$	$8878(2)$	$4610(1)$	$83(1)$
$\mathrm{Cl}(3)$	$1359(3)$	$10981(1)$	$2260(2)$	$87(1)$
$\mathrm{O}(1)$	$8443(6)$	$5700(4)$	$1087(3)$	$68(2)$
$\mathrm{O}(2)$	$7879(6)$	$3790(4)$	$594(3)$	$63(1)$
$\mathrm{O}(3)$	$2517(5)$	$4898(3)$	$3851(3)$	$56(1)$

* Equivalent isotropic U defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.

Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{C}(1)-\mathrm{C}(2)$	$1.440(6)$	$\mathrm{C}(1)-\mathrm{O}(1)$	$1.240(7)$
$\mathrm{C}(1)-\mathrm{O}(2)$	$1.307(6)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.361(6)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.481(7)$	$\mathrm{C}(3)-\mathrm{O}(3)$	$1.338(5)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.547(5)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.513(8)$
$\mathrm{C}(5)-\mathrm{C}(8)$	$1.498(7)$	$\mathrm{C}(6)-\mathrm{Cl}(1)$	$1.776(5)$
$\mathrm{C}(6)-\mathrm{Cl}(2)$	$1.783(6)$	$\mathrm{C}(6)-\mathrm{Cl}(3)$	$1.766(5)$
$\mathrm{C}(7)-\mathrm{O}(3)$	$1.440(7)$		
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(1)$	$126.3(5)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(2)$	$113.0(4)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(2)$	$120.7(4)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$125.7(5)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$127.1(4)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(3)$	$123.2(4)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{O}(3)$	$109.7(4)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$111.1(4)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$111.8(4)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(8)$	$111.8(4)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(8)$	$112.9(4)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{Cl}(1)$	$112.6(3)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{Cl}(2)$	$110.9(3)$	$\mathrm{Cl}(1)-\mathrm{C}(6)-\mathrm{Cl}(2)$	$106.5(3)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{Cl}(3)$	$111.6(4)$	$\mathrm{Cl}(1)-\mathrm{C}(6)-\mathrm{Cl}(3)$	$108.5(2)$
$\mathrm{Cl}(2)-\mathrm{C}(6)-\mathrm{Cl}(3)$	$106.5(3)$	$\mathrm{C}(3)-\mathrm{O}(3)-\mathrm{C}(7)$	$119.9(4)$

Fig. 1. Molecular structure and numbering scheme.

Introduction. The title compound was prepared as part of a total synthesis of the novel marine natural product, dysidin (Williard \& de Laszlo, 1984; Hofheinz \& Oberhänsli, 1977). An X-ray crystal-structure determination of this substance was undertaken to define unambiguously all aspects of its stereochemistry.

Experimental. Clear, colorless crystal of the carboxylic acid $\quad(0.30 \times 0.20 \times 0.35 \mathrm{~mm}), \quad$ m.p. $\quad 409-410 \mathrm{~K}$, aligned on Nicolet $R 3 \mathrm{~m} / \mathrm{E}$ diffractometer with an Mo target, normal focus tube, a graphite monochromator and 0.5 mm pinhole collimator. Lattice parameters calculated from 25 reflections with $29 \leq 2 \theta \leq 31^{\circ}$. No systematic absences found. Total of 1819 reflections measured over a period of 33 h utilizing $\theta / 2 \theta$ scan technique within ranges $3.5 \leq 2 \theta \leq 45^{\circ}, 0 \leq h \leq 7$, $-11 \leq k \leq 11,-13 \leq l \leq 13$. Intensities of three standard reflections $(\overline{2} 23,023,036)$ recorded after every 45 reflections. Total of 98 standard reflections decreasing linearly by $2 \cdot 3 \%$, used to correct remaining 1336 unique, observed reflections $\left[F_{o}>2 \cdot 5 \sigma\left(F_{o}\right)\right.$. Data corrected for Lorentz and polarization effects. No absorbance correction applied. All non-H atoms immediately located by direct-methods structure solution SHELXTL (Nicolet, 1982). Remaining 11 H atoms located in subsequent difference Fourier syntheses. Structure refined by block-diagonal least squares with anisotropic thermal parameters for all atoms except H to minimize $\sum w\left(\left|F_{c}-F_{o}\right|^{2}\right) / \sum F_{o}{ }^{2}$. H-atom thermal parameters taken as 1.2 times equivalent isotropic parameter of the bonded atom. H -atom position parameters fixed in calculated positions in final stages of refinement. Final $R=0.0601$ and $w R=0.0960$ for 160 variables with $w=1 /\left[\sigma\left(F_{o}\right)^{2}+0.0001\left(F_{o}\right)^{2}\right]$ and $S=1 \cdot 26$. Maximum $\Delta / \sigma=0 \cdot 14$ in final refinement cycle. Residual electron density in final Fourier map concentrated in positions near the trichloromethyl group indicative of a rotamer; otherwise no significant peaks. Atomic scattering factors and anomalousdispersion corrections from International Tables for X-ray Crystallography (1974). All computer programs belong to the SHELXTL 4.0 system (Nicolet, 1982).

Discussion. Final positional and isotropic thermal parameters for the non- H atoms are given in Table 1 and the bond lengths and angles are given in Table 2.* The corresponding e.s.d.'s for the least-significant digits are shown in parentheses. A computer-generated plot in Fig. 1 shows the molecular structure and the numbering scheme.

[^0]A least-squares plane $[3.494 x-2.667 y+6.700 z$ $=2 \cdot 1565]$ through the six atoms $\mathrm{O}(1), \mathrm{O}(2), \mathrm{C}(3)$, $C(4), C(5)$ and $O(3)$ reveals that the α, β-unsaturated carboxylic acid is essentially planar. Two features of this structure are somewhat curious: the $C(7)$ methyl carbon is nearly in the plane $(-0.0002 \AA)$ described above and also the double bond between $C(2)$ and $C(3)$ is cis to the shorter $\mathrm{C}-\mathrm{O}$ carboxylic acid bond, i.e. $\mathrm{C}(1)-\mathrm{O}(1)$.

The carboxyl end of this structure is close to a crystallographic inversion center so that a hydrogenbonded dimer is a more accurate representation of the solid.

All $\mathrm{C}-\mathrm{Cl}$ bond lengths are equivalent to one another within experimental error and these lengths agree well with what is expected (Kennard, 1962). From the final residual electron density map it is clear that there is some disorder in the crystal due to different rotamers of the trichloromethyl group. We believe that this fact accounts for the slightly high final $w R$ and residual electron density.

A view of the packing is given in Fig. 2. Intermolecular hydrogen bonds holding two asymmetric units together are shown with dashed lines. No other unusual short intermolecular contacts were noted.

The authors gratefully acknowledge support for this research from the Biomedical Research Grant (BRSG) to Brown University and to the American Cancer

Fig. 2. A view of the packing.

Society (ACS-IN 45w). Funds for the purchase of the Nicolet crystallographic system were provided by the NSF through grant CHE-8206423.

References

Hofheinz, W. \& Oberhänsli, W. E. (1977). Helv. Chim. Acta, 60, 660-669.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Kennard, O. (1962). In International Tables for X-ray Crystallography. Vol. III, pp. 275-276. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Nicolet (1982). SHELXTL. Nicolet XRD Corporation, Madison, WI 53711, USA.
Williard, P. G. \& de Laszlo, S. E. (1984). J. Org. Chem. 49, 3489-3493.

Acta Cryst. (1986). C42, 591-593

Structure of 5-Fluoroarabinosylcytosine

By George Ferguson
Department of Chemistry, University of Guelph, Guelph, Ontario, Canada N1G $2 W 1$
Sheelagh N. Scrimgeour
Department of Chemistry, University of Dundee, Dundee DD14HN, Scotland
and John N. Low and Patrick Tollin
Department of Physics, University of Dundee, Dundee DD1 4HN, Scotland

(Received 11 September 1985; accepted 3 December 1985)

Abstract

C}_{9} \mathrm{H}_{12} \mathrm{FN}_{3} \mathrm{O}_{5}, M_{r}=261 \cdot 2\), orthorhombic, $P 2_{1} 2_{1} 2_{1}, \quad a=5.927$ (2),$\quad b=7.882$ (1),$\quad c=$ 23.069 (4) $\AA, \quad U=1077.7 \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.61 \mathrm{~g} \mathrm{~cm}^{-3}$, Мо $K \alpha, \lambda=0.71073 \AA, \mu=1.35 \mathrm{~cm}^{-1}$, $F(000)=544, T=296 \mathrm{~K}, R=0.030$ for 1077 unique observed reflections. The N-glycosidic torsion angle, χ,

is $164.0(2)^{\circ}$, in the anti range; the sugar pucker is ${ }^{2} E$, $P=165.4(2)^{\circ}, \psi_{m}=37.3(2)^{\circ}$; the $\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$ conformation is $a p$ with $\gamma=173.8(2)^{\circ}$. These are typical values for arabinosyl nucleosides. The $a p$ conformation about the $\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$ bond precludes the formation of an intramolecular hydrogen bond between $\mathrm{O}\left(5^{\prime}\right)$ and

[^0]: * Lists of structure factors, anisotropic thermal parameters and H -atom coordinates have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 42653 (19 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

